Aldosterone regulates the Na-K-2Cl cotransporter in vascular smooth muscle.

نویسندگان

  • Gengru Jiang
  • Scott Cobbs
  • Janet D Klein
  • W Charles O'Neill
چکیده

Aldosterone increases cation transport and contractility of vascular smooth muscle, but the specific transporter involved and how it is linked to smooth muscle tone is unknown. Because the Na-K-2Cl cotransporter (NKCC1) contributes to vascular smooth muscle contraction and is regulated by vasoactive compounds, we sought to determine whether this transporter is a target of aldosterone in rat aorta. Treatment of adrenalectomized rats with aldosterone for 7 days resulted in a 63% increase in NKCC1 activity as measured by bumetanide-sensitive efflux of 86Rb+. Treatment of normal aortas in culture with aldosterone for 3 and 7 days resulted in 29% and 47% increases in NKCC1 activity, respectively. Aldosterone had no acute effect on 86Rb+ efflux. Stimulation of NKCC1 was blocked by spironolactone, a mineralocorticoid receptor antagonist, but not by RU38486, a glucocorticoid receptor antagonist. Aldosterone did not augment the stimulation of NKCC1 by phenylephrine and did not increase NKCC1 mRNA as determined by real-time polymerase chain reaction. We conclude that aldosterone regulates the Na-K-2Cl cotransporter in vascular smooth muscle through classic mineralocorticoid receptors but not through changes in the abundance of NKCC1 mRNA. This could account for the increase in Na+, K+, and Cl- fluxes previously observed in vascular smooth muscle from mineralocorticoid-treated animals and may contribute to increased vascular tone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contractile regulation of the Na(+)-K(+)-2Cl(-) cotransporter in vascular smooth muscle.

Vasoconstrictors activate the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 in rat aortic smooth muscle, but the mechanism is unknown. Efflux of (86)Rb(+) from rat aorta in response to phenylephrine (PE) was measured in the absence and presence of bumetanide, a specific inhibitor of NKCC1. Removal of extracellular Ca(2+) completely abolished the activation of NKCC1 by PE. This was not due to inhibition...

متن کامل

Decreased blood pressure and vascular smooth muscle tone in mice lacking basolateral Na(+)-K(+)-2Cl(-) cotransporter.

The basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) functions in the maintenance of cellular electrolyte and volume homeostasis. NKCC1-deficient (Nkcc1(-/-)) mice were used to examine its role in cardiac function and in the maintenance of blood pressure and vascular tone. Tail-cuff measurements demonstrated that awake Nkcc1(-/-) mice had significantly lower systolic blood pressure than wild...

متن کامل

Na+ influx and Na+-K+pump activation during short-term exposure of cardiac myocytes to aldosterone.

To examine the effect of aldosterone on sarcolemmal Na+ transport, we measured ouabain-sensitive electrogenic Na+-K+pump current ( I p) in voltage-clamped ventricular myocytes and intracellular Na+ activity ([Formula: see text]) in right ventricular papillary muscles. Aldosterone (10 nM) induced an increase in both I p and the rate of rise of [Formula: see text] during Na+-K+pump blockade with ...

متن کامل

Blood pressure regulates the activity and function of the Na-K-2Cl cotransporter in vascular smooth muscle.

The Na-K-2Cl cotransporter (NKCC1) is one of several transporters that have been linked to hypertension, and its inhibition reduces vascular smooth muscle tone and blood pressure. NKCC1 in the rat aorta is stimulated by vasoconstrictors and inhibited by nitrovasodilators, and this is linked to the contractile state of the smooth muscle. To determine whether blood pressure also regulates NKCC1, ...

متن کامل

Role of Na+-K+-2Cl- Cotransporter 1 in Phenylephrine-Induced Rhythmic Contraction in the Mouse Aorta: Regulation of Na+-K+-2Cl- Cotransporter 1 by Ca2+ Sparks and KCa Channels.

BACKGROUND/AIMS Vasoconstrictor-induced rhythmic contraction of arteries or veins has been observed both in vivo and in vitro. Many studies have reported that gap junctions, ryanodine receptors, Na+, K+-ATPase and other factors are involved in vasoconstrictor-induced rhythmic contraction in vascular smooth muscle. However, the mechanism is still not completely understood. METHODS We used vess...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 41 5  شماره 

صفحات  -

تاریخ انتشار 2003